Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei
نویسندگان
چکیده
Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO "essential medicine" eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have not been identified. We describe these amino acid transporters (AATs). In a heterologous expression system, TbAAT10-1 is selective for ornithine, whereas TbAAT2-4 transports both ornithine and histidine. These AATs are also necessary to maintain intracellular ornithine and polyamine levels in T. brucei, thereby decreasing sensitivity to eflornithine and increasing sensitivity to suramin. Consistent with competition for histidine, high extracellular concentrations of this amino acid phenocopied a TbAAT2-4 genetic defect. Our findings established TbAAT10-1 and TbAAT2-4 as the parasite ornithine transporters, one of which can be modulated by histidine, but both of which affect sensitivity to important anti-HAT drugs.-Macedo, J. P., Currier, R. B., Wirdnam, C., Horn, D., Alsford, S., Rentsch, D. Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei.
منابع مشابه
University of Dundee Ornithine uptake and the modulation of drug sensitivity in Trypanosoma brucei
Trypanosoma brucei, protozoan parasites that cause human African trypanosomiasis (HAT), depend on ornithine uptake and metabolism by ornithine decarboxylase (ODC) for survival. Indeed, ODC is the target of the WHO “essential medicine” eflornithine, which is antagonistic to another anti-HAT drug, suramin. Thus, ornithine uptake has important consequences in T. brucei, but the transporters have n...
متن کاملAlterations in ornithine decarboxylase characteristics account for tolerance of Trypanosoma brucei rhodesiense to D,L-alpha-difluoromethylornithine.
Ornithine decarboxylase (ODC), the target enzyme of D,L-alpha-difluoromethylornithine (DFMO), was investigated in four DFMO-tolerant Trypanosoma brucei rhodesiense isolates from East Africa and two DFMO-susceptible T. b. gambiense isolates from West Africa. Neither drug uptake nor inhibition of ODC activity by DFMO in cellular extracts differed in the two trypanosome subspecies. However, the sp...
متن کاملEfficacy of repeated doses of diminazene aceturate (Dinazene®) in the treatment of experimental Trypanosoma brucei infection of Albino rats
The efficacy of repeated doses of Dinazene® in Albino rats experimentally infected with Trypanosoma brucei (Gboko strain) was investigated. A total of 30 adult female Albino rats weighing 130-190 g were used for the study. They were assigned to six groups (groups A-F) of five rats each. Groups A-D were infected intraperitoneally with 1.0 × 106 trypanosomes in 400 μL of PBS diluted blood while g...
متن کاملDrug target identification using a trypanosome overexpression library.
Elucidation of molecular targets is very important for lead optimization during the drug development process. We describe a direct method to find targets of antitrypanosomal compounds against Trypanosoma brucei using a trypanosome overexpression library. As proof of concept, we treated the library with difluoromethylornithine and DDD85646 and identified their respective targets, ornithine decar...
متن کاملTrypanosoma brucei ornithine decarboxylase: enzyme purification, characterization, and expression in Escherichia coli.
Ornithine decarboxylase from the African trypanosome is an important target for antitrypanosomal chemotherapy. Despite this, the enzyme had not been previously purified or extensively characterized as it is a very low level protein. In this paper we describe the purification of Trypanosoma brucei brucei ornithine decarboxylase from bloodstream form trypomastigotes by 107,000-fold to a specific ...
متن کامل